Propositional Logic Notes Class 11 ISC

The concept of proposition means any statement which gives result either true or false.

p: "Today is cold day"
so p is the propositional constant and the rest is the statement.
 There are two types of proposition:
1) Simple: Example is:
p: "Today is holiday"
q: " Dad is at home"
2)Complex/Compound:
When we are combining multiple propositional statements into a single statement using logical connectives that is known as compound proposition.

p and q: " Today is holiday and Dad is at home"

over here"and" is the logical connective.

There a multiple logical connectives such as:
1)Conjunction (and)  . / ^
2)Disjunction (or) +/v
3) Negation (not) ~ 
4) Implication(if ....then) ->
5) Equivalence/Biconditional (if and only if)
<=> or <->

1) Conjunction 
 ------------------------
p: "Today is holiday"
q: " Dad is at home"

p^q: "Today is holiday and Dad is at home"

Truth Table
p.        q.         p^q
0          0.          0
0          1.          0
1          0.          0  
1          1.           1

2) Disjunction 
 ------------------------
p: "Today is holiday"
q: " Dad is at home"

pvq: "Today is holiday or Dad is at home"

Truth Table
p.        q.         pvq
0          0.          0
0          1.          1
1          0.          1  
1          1.          1

3) Negation 
 ------------------------
p: "Today is holiday"

~p: "Today is not holiday"

Truth Table
p.        ~ p
0.           1
1.           0
   
4) Implication 
 ------------------------
p: "Today is holiday"
q: " Dad is at home"

p->q: "If today is holiday then Dad is at home"
we must know the broken algebraic expression :
p->q.    = ~p v q. = p' + q

Truth Table
p.        q.          ~p.     ~pvq ( p ->q)
0          0.          1.            1
0          1.          1.            1
1          0.          0              0
1          1.          0.             1

5) Equivalence/Biconditional 
 ----------------------------------------------
p: "Today is holiday"
q: " Dad is at home"

p<->q: "If today is  holiday only if dad is at home"
we must know the broken algebraic expression :
p<->q.    = p.q+p'.q'
(same bit 0 and different bit 1)
Truth Table
p.        q.          p<->q
0          0.         0
0          1.         1
1          0.         1 
1          1.          0

Predicate and subsequent 
--------------------------------------------
p->q: "If today is holiday then Dad is at home"
here p is predicate and q is subsequent 

Converse
---------------
p->q: "If today is holiday then Dad is at home"
if we interchange p and q then we converse statement 
 q->p : "If Dad is at home then today is holiday"

Inverse
-------------
p->q: "If today is holiday then Dad is at home"

~p-> ~q: "If today is not holiday then Dad is not at home"

Contrapositive
--------------------------
p->q: "If today is holiday then Dad is at home"
then inverse 

~p-> ~q: "If today is not holiday then Dad is not at home"
then apply converse
 ~q->~p : "If Dad is not at home then today is not holiday"
File Handling Java Notes Class 11 ISC